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Age-adjusted Percentage of U.S. Adults Who Were Obese
or Who Had Diagnosed Diabetes
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Increased Risks:

Coronary heart disease

Type 2 diabetes

Cancers (endometrial, breast, and colon)

Hypertension (high blood pressure)

Dyslipidemia (for example, high total cholesterol or high
levels of triglycerides)

Stroke

Liver and gallbladder disease

Sleep apnea and respiratory problems

Osteoarthritis (a degeneration of cartilage and its
underlying bone within a joint)

Gynecological problems (abnormal menses, infertility)
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The Pancreatic 5-Cell
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Mitochondria
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History of Mitochondria

e Eukaryotic ancestors engulfed or were infected by ancient
bacteria ~ 2 billion years ago in symbiosis.

e Structure, energy, and information.
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Mitochondrial DNA

37 genes =
13 subunits
of OXPHOS
+ 22 tRNA +
2 TRNA.

~2-10
mtDNA
copies per
mitochondria
and 100’s of
mitochondria
per cell.
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mtDNA mutations

Mutations — aging, mitochondrial dysfunction, diseases,
cell death, etc.

Mutation rate is 1-2 orders of magnitude higher than
nuclear mutation rate.

No recombination, so this high mutation rate 1s important in
keeping mitochondria diverse, 1.e., it is the adaptive engine.




Reactive Oxygen Species (ROS)

proton cycling coupled to ATP synthesis futile/uncoupled proton cycling

H

intermembrane space @

mitochondrial
inner

protein
 Z catalyzed

i . gl leak
superoxide ,_{ ;_ H

 —

H" non-protein
catalyzed

ADP || & : leak
® o= |
¢ . aconitase
e - ‘damage NO

'-yu v
LA

s NADH
) |« ) Fe
H -‘k TH ] v
.. # -
-\ naoen «OH ONOO

NAD 2GSH ~=:'C;E_P)(
NADPH '\?R ssG | : : oxidative
¥ NA[;P i = damage J
\ /

Green, K, MD Brand, and MP Murphy, Diabetes, 2004.




Banting Lecture 2004
The Pathobiology of Diabetic Complications

A Unifying Mechanism
Michael Brownlee Diabetes, 2005.
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Background

Reactive oxygen species (ROS) can cause oxidative damage, but
also have important signaling functions.

Uncoupling proteins (UCP) contribute to proton leak across the
inner membrane, diverting protons from ATP production while
decreasing ROS production.

Mitochondrial ROS and UCP have been reported to play a key role
in pancreatic [3-cell function/dysfunction under various
environmental conditions.

Although there is evidence to support this, mechanistic details of
ROS and UCP regulation have not yet been unraveled.

Furthermore, experiments typically focus on effects from long-term
exposure to nutrient levels, rather than the short-term responses.




A1ms

e Develop a state-of-the-data mathematical model of beta-cell
mitochondrial respiration, ATP synthesis, and ROS
production/regulation in response to glucose and fatty acid
stimulation. The model should be able to match existing
experimental observations of UCP content and the proton
leak rate.

e Use the model to test our current understanding of the
system, and propose hypotheses related to short- and long-
term perturbations in various environments.

e Use the model to predict an individual’s insulin secretion
rate and quantify [3-cell function.
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+ _+
cytosol H H HH
z| = Al =
Bl B B| g
intermembrane I E| F|E Alp
space

matrix

Cﬁ Ca+ [ — vy V
a‘i\ at NADH  FADH, . H.0 _ROS

NAD FAD

Glu




The Model
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The Complete Model
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ROS Production from NADH Oxidation
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Uncoupling Proteins (UCP)
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Uncoupling Proteins (UCP)
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The Nonlinear Proton Leak Rate
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Scavenging Enzymes
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The Model System
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Short-term responses to glucose:
ROS signaling and the ATP/ADP response are improved with
acute inhibition of UCP activity.
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Long-term responses to glucose:

Model predicts blocking UCP activation causes sustained
increases in ROS levels, and thus oxidative stress, but distributing
the metabolic load by increasing the mitochondrial density (po)
improves the ATP/ADP response while keeping ROS levels low.
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Short-term responses to fatty acids:
Addition of fatty acids causes an increase in the membrane
potential (and the other mitochondrial variables) that saturates for
higher fatty acid concentrations
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Long-term responses to fatty acids:

Model simulations suggest FFA could cause the experimentally
observed crossover effect (i.e., an elevated basal insulin secretion,
but decreased GSIS) by increasing the ROS-dependent UCP-
production signal (model parameter p23).
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Normalized Variables

Clinical Applications?

Diet Study 1: Eight overweight, mixed-ethnicity subjects.
Correlation between ISI and total ROS/ATP.
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Clinical Applications?
Diet Study 2: 102 nondiabetic, African-American subjects.
Correlations between several measures and total ROS/ATP.
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A clinical application:
Our model may be useful in predicting the c-peptide and insulin
secretion rates and quantifying [-cell function in an individuall.
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Summary

The model 1s consistent with a number of experimental
observations, and it is capable of predicting mitochondrial
responses to nutrient inputs (glucose and fatty acids).

It provides a tool to test the current understanding of a
complex system, as many details of the autoregulation of ROS
via UCP control have not yet been fully unraveled in the
experimental literature.

Model predictions provide testable hypotheses; e.g. increasing
mitochondrial density and inhibiting UCP activation may
increase GSIS while decreasing oxidative stress.

The model may have useful clinical applications; e.g. the c-
peptide secretion rate model, if standard parameter values can
identified and compared to on an individual basis.




Future Work

e Address limitations of the current model; e.g. consider
dynamic antioxidant content, other endogenous UCP
activators, and other pathways of proton leak.

e Apply the c-peptide secretion rate model to a large data set
to try to identify standard parameters.

e Extend the model to mitochondria in other tissues. This may
be useful in suggesting holistic metabolic therapies given
the systemic function that mitochondria serve.
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